close

 

ДТПХхх5 термопары на основе КТМС с коммутационной головкой EXIA

ДТПХхх5 термопары на основе КТМС с коммутационной головкой EXIA

Сертификат средств измерений Россия

Цены

Термопары во взрывозащищенном исполнении, в отличие от датчиков в общепромышленном исполнении, применяются для измерения температуры взрывоопасных смесей газов, паров, а также легковоспламеняющихся и взрывчатых веществ. По техническим характеристикам схожи с термопарами в общепромышленном исполнении, но содержат в конце маркировки обозначение искробезопасной цепи: «ЕХI-ТХ», где вместо Х указывается температурный класс в маркировке взрывозащиты.

Термоэлектрические преобразователи ОВЕН взрывозащищенного исполнения имеют уровень взрывозащиты «Ga» вида взрывозащиты «искробезопасная электрическая цепь «ia» и предназначены для установки во взрывоопасных зонах классов 0, 1, 2 по классификации ГОСТ 31610.10-1-2022, в которых возможно образование аэрозоля, паровоздушных, газовоздушных смесей для группы оборудования II, подгруппы IIA, IIB, IIC, температурных классов T6, T5, T4, T3, T2, T1 и максимальной температуры поверхности 600 ⁰C по классификации ГОСТ 31610.20-1-2020.

Также термоэлектрические преобразователи ОВЕН имеют уровень взрывозащиты «Da» вида взрывозащиты «искробезопасная электрическая цепь «ia» и предназначены для установки во взрывоопасных зонах классов 20, 21, 22 по классификации ГОСТ 31610.10-2-2017, в которых возможно образование пылевоздушных смесей, смесей горючих частиц и слоев горючей пыли для группы оборудования III, подгруппы IIIA, IIIB, IIIC по классификации ГОСТ 31610.20-2-2017 максимальной температуры поверхности 80…600 °С, установленной согласно ГОСТ 31610.0- 2019.

Термопары ДТП ОВЕН Exi могут устанавливаться в комбинированных зонах, содержащих одновременно газовые и пылевые взрывоопасные смеси и классифицированных по ГОСТ 31610.10-1-2022, ГОСТ 31610.20-1-2020, ГОСТ 31610.10-2-2017, ГОСТ 31610.20-2-2017

Описание и устройство КТМС приведено в Справочной информации по термопарам.

Среда измерения

Взрывоопасные смеси газов, паров, пылевоздушных смесей, горючей пыли, а также легковоспламеняющихся и взрывчатых веществ.

Искробезопасная цепь Ex i. 

Искробезопасная электрическая цепь – это цепь, в которой разряды или термические воздействия, возникающие в нормальном или аварийном режиме работы электрооборудования, не вызывают воспламенения взрывоопасной смеси. Датчики температуры ОВЕН имеют уровень искрозащиты Ex ia (особо взрывобезопасный), что сохраняет условия безопасности даже в случае одновременных и независимых повреждений.

Взрывозащищенность датчика обеспечивается следующими средствами:

  • выполнение конструкции датчика в соответствии с требованиями ГОСТ Р МЭК 60079-11-2010;
  • ограничение максимального тока Ii и максимального напряжения Ui в цепях датчика до искробезопасных значений;
  • ограничение емкости Ci конденсаторов, содержащихся в электрических цепях датчика, и суммарной величины индуктивности Li.

Ограничение тока и напряжения в цепях датчика до искробезопасных значений достигается за счет обязательного подключения датчика через барьер искрозащиты (рекомендуется ОВЕН ИСКРА–ТП.02), имеющий вид взрывозащиты выходных цепей «искробезопасная электрическая цепь» с уровнем «ia» для взрывоопасных смесей подгруппы IIC по ГОСТ 31610.11-2014 (маркировка [Ex ia] IIC).

Стандартный срок производства – от 7 рабочих дней.

Расшифровка маркировки взрывозащиты датчиков температуры ОВЕН

0Ех ia IIC T1...Т6 Ga Х

0Ex ia IIC T600°C Ga X

0

Датчики относятся к категории особо взрывобезопасного оборудования

Ех

Знак соответствия стандартам взрывозащиты

ia

Вид взрывозащиты – искробезопасная цепь, уровень «ia» (наивысший)

IIC

Группа позволяет использовать датчик в наиболее взрывоопасных нерудничных средах (например, водород, ацетилен)

Т1…Т6,

Т600

Датчик может использоваться в температурных классах Т1…Т6 или Т600, указанных в таблице

Ga

Уровень взрывозащиты датчика – «очень высокий», применены дополнительные средства взрывозащиты

Х

Особые условия эксплуатации датчиков

Ex ia IIIC T20080°C…T200600°C Da X
Ех Знак соответствия стандартам взрывозащиты
ia Вид взрывозащиты – искробезопасная цепь, уровень «ia» (наивысший)
IIIC Группа позволяет использовать датчик во взрывоопасных пылевых средах (например, угольная пыль, мука). Кроме шахт
T20080°C…T200600°C Максимальная температура поверхности со слоем пыли толщиной 200 мм
Da Уровень взрывозащиты датчика в пылевых средах – «очень высокий», применены дополнительные средства взрывозащиты
Х Особые условия эксплуатации датчиков

Показатели надежности

Вероятность безотказной работы

Температура
применения, °С

Гарантийный срок
эксплуатации

Средний срок службы,
не менее

ДТПК и ДТПN на основе КТМС

0,95 за 40 000 часов

-40...+600

5 лет

10 лет

0,95 за 16 000 часов

+600...+900

2 года

4 года

0,95 за 8 000 часов

+900…+1100

1 год

2 года

Не нормируется

+1100...+1300

-

-

ДТПL на основе КТМС

0,95 за 40 000 часов

-40...+600

5 лет

10 лет

ДТПJ на основе КТМС

0,95 за 40 000 часов

-40...+600

5 лет

10 лет

0,95 за 16 000 часов

+600…+800

2 года

4 года

Интервал между поверками для ДТПL на основе КТМС – 5 лет; для всех остальных ДТП – 2 года.

Параметры предельных состояний ДТПХ ХХ5EXI

Температурный класс/ максимальная температура поверхности Т6/80°С Т5/95°С Т4/130°С Т3/195°С Т2/290°С Т1/440°С 600 °С
Максимальная температура поверхности и измеряемой среды 80 °С 95 °С 130 °С 195 °С 290 °С 440 °С 600 °С
Температура окружающей среды 80 °С 90 °С 120 °С

 

Особые условия эксплуатации датчиков (знак Х в конце маркировки)

 

  • Подключение датчика к внешним цепям должно производиться через сертифицированные барьеры искробезопасности.
  • Установка, подключение, эксплуатация, тех. обслуживание и отключение датчика должно производиться в соответствии с технической документацией производителя.
  • Температурный класс в маркировке взрывозащиты термопреобразователей выбирается исходя из максимальной температуры окружающей среды и максимальной температуры контролируемой среды в соответствии с таблицей.

Конструктивное исполнение коммутационных головок для ОВЕН ДТПХхх5 на основе КТМС

Конструктивное исполнение головки

Увеличенная (стандарт)

Материал головки

металлическая

Силумин

Модели

275, 285, 295, 365, 115–165, 225

Температура клеммной головки в рабочих условиях эксплуатации не должна превышать температуру 120 °С.

Конструктивные исполнения термопар на основе КТМС с коммутационной головкой с EXIA (модели ХХ5)

Конструктивное исполнение

Модель

Параметры

Материал

Длина монтажной части L*, мм

Преобразователь термоэлектрический с коммутационной головкой на основе КТМС модель 275

275

D = 3 мм

D = 4,5 мм

ДТПL

сталь 12Х18Н10Т (-40…+600 °С)
диаметр КТМС 3,0 мм

 

ДТПK
сталь AISI321 (-40 (0)…+800 °С)***
диаметр КТМС 3,0 мм
диаметр КТМС 4,5 мм

 

сталь AISI310 (-40 (0)…+900 °С)
диаметр КТМС 4,5 мм

 

сталь AISI316 (-40 (0)…+900 °С)***
диаметр КТМС 4,5 мм
диаметр КТМС 3,0 мм

 

ДТПN
сплав Nicrobell D (-40 (0)…+1250 °С)
диаметр КТМС 4,5 мм

 

ДТПJ
сталь AISI316 (-40…+600 °С)
диаметр КТМС 3,0 мм
диаметр КТМС 4,5 мм

60...30000

кратно 10

Преобразователь термоэлектрический с коммутационной головкой на основе КТМС модель 285

Подвижный штуцер

285

D = 3 мм

D = 4,5 мм

M = 20×1,5 мм

S = 22 мм

Преобразователь термоэлектрический с коммутационной головкой на основе КТМС модель 295

Подвижный штуцер

295

D = 3 мм

D = 4,5 мм

M = 20×1,5 мм

S = 22 мм

 Преобразователь термоэлектрический с коммутационной головкой на основе КТМС модель 365

365

D = 3 мм

D = 4,5 мм

M = 20×1,5 мм

S = 27 мм

Преобразователи термоэлектрические на основе КТМС в защитной арматуре модель 115

115

D = 20 мм

Диаметр КТМС 3 мм, 4,5 мм

ДТПL

сталь 12Х18Н10Т (-40...+600 °С)

Диаметр КТМС 3,0 мм

 

ДТПK

сталь 12Х18Н10Т (−40 (0)...+800 °С)***

сталь 15Х25Т (−40 (0)...+1000 °С)***

сталь AISI316Ti (−40 (0)...+900 °С)***

сталь AISI 310 (−40 (0)...+1100 °С)***

сталь ХН45Ю (−40 (0)...+1100 °С)***

Диаметр КТМС 4,5 мм

 

ДТПN

сталь AISI310 (-40 (0)…+1100 °С)***

сталь ХН45Ю (-40 (0)...+1250 °С)***

Диаметр КТМС 4,5 мм

 

 

L1, L2:

250, 320,

400, 500,

630, 800,

1000, 1250,

1600, 2000

 

Преобразователи термоэлектрические на основе КТМС в защитной арматуре модель 125

125

D = 20 мм

Диаметр КТМС 3 мм, 4,5 мм

250, 320,

400, 500,

630, 800,

1000, 1250,

1600, 2000

Преобразователи термоэлектрические на основе КТМС в защитной арматуре модель 135

135

D = 20 мм,

M = 27×2 мм**,

S = 32 мм

Диаметр КТМС 3 мм, 4,5 мм

Преобразователи термоэлектрические на основе КТМС в защитной арматуре модель 225

225

D = 20 мм

Диаметр КТМС 4,5 мм

ДТПK

сталь ХН45Ю (-40 (0)...+1100 °С)***

Диаметр КТМС 4,5 мм

 

ДТПN

сталь ХН45Ю (-40 (0)...+1250 °С)***

Диаметр КТМС 4,5 мм

Преобразователи термоэлектрические на основе КТМС в защитной арматуре модель 145

145

D = 12 мм,

D1 = 20 мм

Диаметр КТМС 4,5 мм

 

ДТПK
корунд CER795 (-40 (0)...+1100 °С)***
Диаметр КТМС 4,5 мм

ДТПN
корунд CER795 (-40 (0)...+1250 °С)***
Диаметр КТМС 4,5 мм

 

Преобразователи термоэлектрические на основе КТМС в защитной арматуре модель 155

155

D = 20 мм,

D1 = 30 мм

Диаметр КТМС 4,5 мм

Преобразователи термоэлектрические на основе КТМС в защитной арматуре модель 165

165

D = 20 мм,

D1 = 30 мм,

M = 27×2 мм**,

S = 32 мм

250, 320,

400, 500,

630, 800,

1000, 1250,

1600

* Длина монтажной части L выбирается при заказе. Для модели 115 при заказе указывается соотношение длин L1 / L2.
** По спец. заказу возможно изготовление датчика с трубной резьбой.
*** Для термопар на основе КТМС типов К и N 1-го класса допуска по ГОСТ 8.585-2001 нижней границей диапазона измерения является 0 °С, для этих же термопар 2-го класса допуска по ГОСТ 8.585-2001 нижней границей диапазона измерения является -40 °С.

Для ДТП мод. 145, 155, 165: температура в зоне перехода от корундовой части к металлической не должна превышать 800 °С.

Технические характеристики

  •  

Характеристика

Значение

ДТПLхх5

ДТПКхх5

ДТПJхх5

ДТПNхх5

Номинальная статическая характеристика (НСХ)

ТХА (L)

ТХА (К)

ТЖК (J)

ТНН (N)

Рабочий диапазон преобразования, оС

-40…+600

-40...+800

-40...+900

-40...+1000

-40...+1100

-0...+800

-0...+900

-0...+1000

-0...+1100

-40...+600

-40...+1250

 

-0...+1250

Класс допуска

2

2

1

1

2

1

Условное давление, МПа, не более

0,4…10 (в зависимости от конструктивного исполнения)

Исполнение рабочего спая термопары, относительно корпуса датчика

изолированный;
неизолированный

Диаметр КТМС, мм

3,0

3,0; 4,5

4,5

Показатель тепловой инерции, с, не более:

- с изолированным рабочим спаем

4

- с неизолированным рабочим спаем

3

Степень защиты по ГОСТ 14254

IP54, IP67

Материал защитной оболочки КТМС

сталь 12Х18Н10Т

сталь 12Х18Н10Т

сталь AISI310

сталь AISI316

сталь AISI321

сталь 15Х25Т

сталь ХН45Ю

корунд CER795

сталь AISI316

сплав Nicrobell D

сталь ХН45Ю

корунд CER795

Маркировка взрывозащиты

0Ex ia IIC T6…T1 Ga X

0Ex ia IIC T600°C Ga X

Ex ia IIIC T20080°C…T200600°C Da X

 

Параметры искробезопасных электрических цепей

Ui=10,2 В; Ii=200 мA; Li, Сi пренебрежимо малы

Модификации

  •  

Обозначение при заказе для мод. 275-295, 365

Обозначение при заказе для мод. 275-295, 365

ХДТПХХХ-ХХ1Х.Х.Х.EXI-Х

Обозначение при заказе для мод. 115-165, 225

ДТПХхх5 термопары с коммутационной головкой на основе КТМС EXIA

ХДТПХХ-ХХ1Х.Х.Х.EXI-Х

Пример обозначения при заказе: ДТПN285-0918.1000.1.ЕХI-Т1

Это означает, что к изготовлению и поставке подлежит преобразователь термоэлектрический «нихросил-нисил» с диапазоном измерения температуры: -0…+1250 оС, с изолированным рабочим спаем, диаметром КТМС 4,5 мм, длиной монтажной части 1000 мм, с металлической коммутационной головкой, модель 285, во взрывозащищенном исполнении, температурный класс Т1 (температура поверхности датчика до 440 °С).

Преобразователи термоэлектрические на основе КТМС с Г-образной монтажной частью, мод.115

ХДТПХ115-ХХ1Х.Х.Х.EXI-Х

Видео

  •  

Вебинар «Термопары ОВЕН. Самые "горячие" датчики температуры в мире»

Вебинар «Термопары ОВЕН. Самые "горячие" датчики температуры в мире»

Подробнее

 

Документация

  •  
Документация
Руководство по эксплуатации ДТП   pdf 8.53 MB  
Сертификаты
Описание типа СИ ДТП Россия zip 3.62 MB  
Сертификат промышленной безопасности на ДТП   zip 10.64 MB  
Сертификат взрывозащиты для ДТП в исполнении "сенсор"   zip 2.57 MB  
Свидетельство о типовом одобрении ДТП   zip 3.65 MB  
Сертификат средств измерений ДТП Россия.
28476-16
zip 201.16 kB  
Сертификат средств измерений ДТП Беларусь zip 193.56 kB  
Сертификат средств измерений ДТП Казахстан zip 170.49 kB  
Отказное письмо на ДТП сенсор   zip 416.66 kB  

 

Статьи

  •  

Статьи о термопарах

Как выбрать датчик температуры? 4 принципа!
Какую температуру должен измерять датчик, как будет осуществляться его монтаж, куда будут передаваться показания, есть ли уже сигнальный кабель от места установки датчика до вторичного прибора – все эти вопросы нужно учитывать при выборе датчика температуры для своей задачи. (Читать в Яндекс.Дзен)

Как определить тип термопары?
Разумеется, сначала нужно посмотреть на бирку на кабельном выводе термопары или на ее головке. Но бывает, что надписи стерлись… В статье описаны варианты определения типа термопары, даны полезные советы. (Читать в Яндекс.Дзен)

Как определить, что термопара неисправна?
Что делать, если вдруг ваш ТРМ, регулирующий температуру печи, показывает ошибку? Разбираемся в причинах: помехи или обрыв термопары. (Читать в Яндекс.Дзен)

Принцип действия. Термопары из КТМС
При измерении высоких температур (от 300-400 °С) в промышленности используют термопары. Конструкция, особенности применения и преимущества термопар с КТМС. (Читать в Яндекс.Дзен)

Арматура для монтажа датчиков температуры
Как правильно устанавливать датчики, какую вспомогательную арматуру необходимо для этого использовать: бобышки, гильзы и штуцеры. Описаны виды арматуры, выпускаемые компанией ОВЕН. (Читать в Яндекс.Дзен)

Статьи о типах термопар:

ТХА, тип К - особенности, достоинства и недостатки этой термопары
Это самая распространенная термопара. Ее достоинства: бюджетность, хорошая чувствительность, широкий диапазон измеряемых температур, практически линейная зависимость выдаваемых милливольт от температуры. Термопары с КТМС и проволочные: конструкции, отличительные особенности, характеристики. (Читать в Яндекс.Дзен)

ТЖК: универсальная термопара типа J
Термопары типа J могут применяться во всех видах сред: окислительной, восстановительной, инертной и в вакууме. Термопару ТЖК можно назвать универсальной. Но… есть у нее и недостатки. Все о термопаре типа J читайте в статье. (Читать в Яндекс.Дзен)

“Платиновые” термопары типа S. Зачем, ведь это очень дорого?
К датчикам для измерения температур выше 1000 °С предъявляются особые требования. Такие температуры чаще всего бывают в печах металлургии и машиностроения (термообработка), в стекольной промышленности, производстве строительных материалов и керамики. Именно там применяются эти дорогостоящие термопары. Конструкция, особенности применения, характеристики платиновых термопар. (Читать в Яндекс.Дзен)

ТХК, тип L – отличная термопара для невысоких температур родом из СССР. В чем ее уникальность?
Термопара «хромель-копель» одна из наиболее широко распространенных для измерения температур до 600 °С. Ее главный «козырь» – повышенный рабочий ресурс по сравнению с любыми другими термопарами. Высокая чувствительность и уникальная особенность, позволяющая ей работать десятки тысяч часов без существенного увеличения ошибки измерения, погрешности – главные достоинства термопары. (Читать в Яндекс.Дзен)

ТНН "нихросил-нисил", тип N. Зачем нужна улучшенная версия термопары ТХА? История и результаты исследований
Нихросил-нисил ТНН по сравнению с ТХА обладает лучшей стабильностью термоЭДС и большей стойкостью к окислению. У этой термопары отсутствует временная нестабильность. При высоких температурах – выше 1050 °C – тип N показывает гораздо лучшие результаты. На температуры выше 1050-1100 °C рекомендуется применять термопреобразователи на основе КТМС. Конструкция, особенности, характеристики термопар типа N. (Читать в Яндекс.Дзен)

Применения термопар:

Датчики температуры для электродвигателей и подшипников
Речь идет о компактных датчиках с кабельным выводом – термосопротивлениях и термопарах ОВЕН ДТС и ДТПХ моделей 014 и 034. Представлены их конструкции и характеристики, описаны преимущества. (Читать в Яндекс.Дзен)

Автоматика ОВЕН для печей фьюзинга и моллирования стекла
Особенности применения оборудования и датчиков для печей в стекольной промышленности. Что есть у ОВЕН? Терморегулятор ТРМ251 позволяет задавать шаги программы технолога. Термопары ДТПК025, ДТПК444 с КТМС, бюджетные бескорпусные термопары ДТПК021 и ДТПК031 – в каких случаях что лучше применять. Описаны особенности и характеристики датчиков. (Читать в Яндекс.Дзен)

Бескорпусные бюджетные термопары
Малогабаритные, простые датчики температуры ОВЕН: представлены их конструктивные особенности, отличительные характеристики, рекомендации по применению. (Читать в Яндекс.Дзен)

Термопреобразователи с вилками и разъемы для них
Как быстро и легко подключить датчики температуры, не прибегая к использованию монтажных инструментов? Для этого существуют термоэлектрические преобразователи в исполнении с вилками. В статье представлены модификации датчиков и их характеристики, а также вилки и розетки, продаваемые отдельно. (Читать в Яндекс.Дзен)

Термопары для измерения температуры агрессивных веществ
Агрессивная среда — «бич» контактных датчиков температуры. Растворы солей, кислот, щелочей выводят датчики из строя раньше срока. ОВЕН выпускает термопары с защитной арматурой из стали AISI 316 Ti, и им не страшны ни муравьиная, ни молочная, ни фосфорная кислоты. И даже соленая морская вода или среда с содержанием до 25 % сероводорода. Читайте о коррозионно стойких датчиках. (Читать в Яндекс.Дзен)